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Abstract 18 
Multiomic profiling is useful in characterizing heterogeneity of both health and disease states. Obesity 19 
exerts profound metabolic perturbation in individuals and is a risk factor for multiple chronic diseases. 20 
Here, we report a global atlas of cross-sectional and longitudinal changes associated with Body Mass 21 
Index (BMI) across 1,100+ blood analytes, as well as their correspondence to host genome and fecal 22 
microbiome composition, from a cohort of 1,277 individuals enrolled in a wellness program. Machine 23 
learning-based models predicting BMI from blood multiomics captured heterogeneous states of both 24 
metabolic and gut microbiome health better than classically measured BMI, suggesting that multiomic 25 
data can provide deeper insight into host physiology. Moreover, longitudinal analyses identified 26 
variable trajectories of BMI in response to a lifestyle intervention, depending on the analyzed omics 27 
platform; metabolomics-based BMI decreased to a greater extent than actual BMI, while proteomics-28 
based BMI exhibited greater resistance. Our analysis further elucidated blood analyte–analyte 29 
associations which were significantly modified by obesity and partially reversed in the metabolically 30 
obese population through the program. Altogether, our findings provide an atlas of the gradual blood 31 
perturbations accompanying obesity and serve as a valuable resource for robustly characterizing 32 
metabolic health and identifying actionable targets for obesity. 33 

  34 
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Introduction 35 

Obesity prevalence has been increasing over the past four decades in adults, adolescents and children 36 
around most of the world1,2. Many studies have demonstrated that obesity is a major risk factor for 37 
multiple chronic diseases such as type 2 diabetes mellitus (T2DM), metabolic syndrome, 38 
cardiovascular disease (CVD), and certain types of cancer3–6. In obese humans, even 5% loss of body 39 
weight can be sufficient for improving metabolic and cardiovascular health7, and weight loss with 40 
lifestyle interventions can reduce the risk for obesity-related chronic diseases8. Nevertheless, obesity 41 
and its physiological manifestations appear highly heterogeneous, necessitating additional research to 42 
better understand this prevalent health condition. 43 

Most commonly, obesity is assessed with an anthropometric Body Mass Index (BMI), 44 
defined as the body weight divided by the squared body height [kg m−2]. BMI does not directly 45 
measure body composition, but at the population level, BMI correlates well with direct measurements 46 
of body fat percentage using computed tomography (CT), magnetic resonance imaging (MRI), or 47 
dual-energy X-ray absorptiometry (DXA)9. Because BMI is easily calculated and commonly 48 
understood among researchers, clinicians, and the general public, it is widely used for the primary 49 
diagnosis of obesity and applied as a simple index of efficiency in lifestyle intervention. 50 

At the same time, there are considerable limitations to BMI as a surrogate of health/disease 51 
metric; e.g., differences in body composition can lead to misclassification of people with a high 52 
muscle-to-fat ratio (e.g., athletes) as obese, and can undervalue metabolic improvement with 53 
exercise10. In addition, a meta-analysis demonstrated that the common obesity diagnosis using a BMI 54 
cutoff has high specificity but low sensitivity in identifying individuals with excess body fat11, which 55 
stems from the difference of appropriate cutoff threshold between ethnic populations as well as the 56 
existence of metabolically obese, normal-weight (MONW) individuals12,13. Likewise, there are 57 
subgroups in the BMI-classified obese group: i.e., metabolically healthy obese (MHO) and 58 
metabolically unhealthy obese (MUO). Although most MHO individuals are not necessarily healthy, 59 
and are simply healthier than MUO individuals14, the transition from MHO to MUO may be an 60 
important feature for development of obesity-related chronic diseases15. Moreover, this transition is 61 
potentially preventable through lifestyle interventions16. Altogether, BMI is undoubtedly useful but 62 
too crude to provide insight into heterogeneous states of obesity. 63 

Omics studies have suggested the usefulness of blood omics data in health-related metrics; 64 
e.g., blood proteomics captures many health conditions17, and blood metabolomics reflects habitual 65 
diets and gut microbiome profiles18,19. Intriguingly, a recent study showed that a machine learning-66 
based BMI model comprising 49 BMI-associated blood metabolites captures obesity-related health 67 
outcomes (e.g., percent visceral fat, blood pressure) better than BMI and genetic risk20. Hence, 68 
although a targeted metric (e.g., body composition) or a specific biomarker provides useful 69 
information, multiomic blood profiling has greater potential to bridge the multifaceted gaps between 70 
BMI and the complex physiological states across obese individuals. 71 

Previously, our research group has generated personal, dense, dynamic data (PD3) clouds on 72 
108 healthy participants as part of a scientific wellness pilot study21. The PD3 clouds include human 73 
genomes and longitudinal measurements of metabolomics, proteomics, clinical lab tests, gut 74 
microbiomes, wearable devices, and health/lifestyle questionnaires accompanied by a coaching 75 
intervention. The cohort has since been expanded to over 5,000 individuals, contributing to multiple 76 
novel scientific findings19,22–26. In this study, we leveraged the wealth of the collected dataset to 77 
investigate the physiological changes accompanying obesity. 78 

Herein, using BMI as a starting point, we report our investigations into the multiomic 79 
perturbations associated with obesity. Blood analytes across all studied omics platforms have a strong 80 
capacity to explain a large portion of the variation in BMI. Through machine learning approaches, we 81 
also show a heterogeneity in metabolic states accompanying obesity, which is not captured by 82 
measured BMI. Furthermore, longitudinal analyses demonstrate variable changes in metabolic health 83 
through lifestyle coaching; i.e., the plasma metabolomics exhibits stronger response than measured 84 
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BMI, while the plasma proteomics exhibits weaker response. Our findings highlight the power of 85 
blood multiomics in investigating the underlying physiology of obesity and weight loss from a clinical 86 
standpoint. 87 

 88 

Results 89 

Plasma multiomics captures 48–78% of the variance in BMI 90 

To investigate the molecular effects of obesity on metabolic profiles, we defined a study cohort of 91 
1,277 adults who participated in a wellness program (Arivale)19,21–26 and whose datasets included 92 
coupled measurements of metabolomics, proteomics, and clinical labs from the same blood draw (see 93 
Methods). This study design allowed us to directly investigate the similarities and differences between 94 
omics platforms in regards to how they reflected the metabolic state of each individual. The defined 95 
cohort was characteristically female (64.3%), middle aged (mean ± s.d.: 46.6 ± 10.8 years), and white 96 
(69.7%) (Supplementary Fig. 1), consistent with our previous studies19,22–26. Based on the World 97 
Health Organization (WHO) international standards of BMI cutoff (underweight: <18.5 kg m−2, 98 
normal: 18.5–25 kg m−2, overweight: 25–30 kg m−2, obese: ≥30 kg m−2)27, the baseline prevalence was 99 
similar between normal, overweight, and obese classes, and only 0.8% of participants were 100 
underweight class (underweight: 10 participants (0.8%), normal: 426 participants (33.4%), 101 
overweight: 391 participants (30.6%), obese: 450 participants (35.2%)). 102 

Leveraging the baseline measurements of plasma molecular analytes (metabolomics: 766 103 
metabolites, proteomics: 274 proteins, clinical labs: 71 clinical lab tests; Supplementary Data 1), we 104 
generated omics-based machine-learning models predicting BMI. To address multicollinearity in our 105 
dataset (Supplementary Fig. 2a), we applied a tenfold cross-validation (CV) scheme of the least 106 
absolute shrinkage and selection operator (LASSO) algorithm for the baseline metabolomics, 107 
proteomics, clinical labs, and combined-omics (i.e., using all metabolomics, proteomics, and clinical 108 
labs) datasets. This approach generated metabolomics-based, proteomics-based, clinical labs 109 
(chemistries)-based, and combined omics-based BMI predictions (MetBMI, ProtBMI, ChemBMI and 110 
CombiBMI, correspondingly). The resulting models retained 62 metabolites, 30 proteins, 20 clinical 111 
lab tests, and 132 analytes across all ten MetBMI, ProtBMI, ChemBMI, and CombiBMI models, 112 
respectively. These selected predictor variables exhibited low collinearity (Supplementary Fig. 2b, c), 113 
validating the variable selection during LASSO modeling28. The generated models demonstrated 114 
remarkably high performance for BMI prediction, ranging from mean out-of-sample R2 = 0.48 115 
(ChemBMI) to 0.70 (ProtBMI) (Fig. 1a, b). The CombiBMI model further improved the performance 116 
of BMI prediction (R2 = 0.78; Fig. 1b), suggesting that, although there is a considerable overlap in the 117 
signal detected by each omics platform, different omic measurements still contain unique information 118 
regarding BMI. The performance ordering between the models (ChemBMI < ProtBMI ~ MetBMI < 119 
CombiBMI) were also consistent in sex-stratified models (Supplementary Fig. 3a). 120 

BMI has been reported to be associated with many anthropometric and clinical metrics such 121 
as waist circumference, blood pressure, sleep quality, and polygenic risk scores (PRSs)3,4,14,24,29. As a 122 
first test for the validity of omics-based BMI models, we examined the association of omics-based 123 
BMI with each of 51 numeric physiological measures. BMI was significantly associated with 27 124 
features (false discovery rate (FDR) < 0.05) including daily physical activity measures from wearable 125 
devices, waist-to-height ratio, blood pressure, and BMI PRS (Fig. 1c). With minor differences in 126 
significant features between the models (MetBMI: 25 features, ProtBMI: 25 features, ChemBMI: 25 127 
features, CombiBMI: 25 features), there was concordance among the associations of all omics-based 128 
BMI predictions and these BMI-associated features (Fig. 1c), indicating that the omics-based BMIs 129 
basically maintain the characteristics of BMI in terms of anthropometric, genetic, lifestyle, and 130 
physiological parameters. 131 
 132 

Omics-based BMI captures the variation in BMI better than any single analyte 133 
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To confirm the robustness of the variable selection process, we iterated the LASSO modeling while 134 
dropping the analyte with the strongest β-coefficient in each iteration step. If a variable is 135 
indispensable for a model, the performance should decrease drastically after dropping the variable. In 136 
all omics-based BMI models, a steep decay in the mean out-of-sample R2 across ten models was 137 
observed in the first 5–9 iterations (Supplementary Fig. 3b–e), suggesting that the variables that had 138 
the largest absolute β-coefficient values in the original LASSO models were the most important in 139 
predicting BMI. Interestingly, the overall slope of R2 decay in the MetBMI model was more gradual 140 
than that in the ProtBMI and ChemBMI models (Supplementary Fig. 3b–d), implying that metabolites 141 
contain more redundant information to predict BMI. Indeed, the proportion of the variables that were 142 
robustly retained across all ten LASSO models to the variables that were retained in at least one of ten 143 
LASSO models was lower in the MetBMI model compared to the ProtBMI and ChemBMI models 144 
(MetBMI: 62/209 metabolites ≈ 29.7%, ProtBMI: 30/74 proteins ≈ 40.5%, ChemBMI: 20/41 clinical 145 
lab tests ≈ 48.9%), confirming the higher level of redundancy in metabolomics. Nevertheless, a large 146 
number of metabolites remained in the robust 132 analytes of the CombiBMI model (77 metabolites, 147 
51 proteins, 4 clinical lab tests; Fig. 2a), suggesting that each of the data types possesses unique 148 
information about BMI. The strongest positive predictors in the CombiBMI model (mean β-coefficient 149 
> 0.02) were leptin (LEP), adrenomedullin (ADM), and fatty acid-binding protein 4 (FABP4), and the 150 
strongest negative ones (mean β-coefficient < −0.02) were insulin-like growth factor-binding protein 1 151 
(IGFBP1) and advanced glycosylation end-product specific receptor (AGER; also described as 152 
receptor of AGE, RAGE); that is, proteins were the strongest contributors to the model. Furthermore, 153 
although it is possible that metabolites which are highly associated with the retained proteins were 154 
eliminated from the CombiBMI model due to collinearity, the absolute β-coefficient values of the 155 
robustly retained variables were still lower and the differences among them were milder in the 156 
MetBMI model compared to the ProtBMI model (Supplementary Fig. 4). 157 

At the same time, the existence of strong and robust predictors in the omics-based BMI model 158 
implied that a single analyte may carry sufficient information to predict BMI. To address this 159 
possibility, we regressed BMI independently to each analyte that was retained in at least one of ten 160 
LASSO models (MetBMI: 209 metabolites, ProtBMI: 74 proteins, ChemBMI: 41 clinical lab tests). 161 
Among the analytes that were significantly associated with BMI (180 metabolites, 63 proteins, 30 162 
clinical lab tests), only LEP, FABP4, and interleukin 1 receptor antagonist (IL1RN) univariately 163 
explained over 30% of the variance in BMI (Fig. 2b–d), with a maximum of 37.9% (LEP). In contrast, 164 
the MetBMI, ProtBMI, and ChemBMI models explained 68.9%, 70.6%, and 48.8% of the variance in 165 
BMI, respectively. Moreover, even upon eliminating several strong predictor analytes such as LEP 166 
and FABP4 from the omic datasets, the generated models still explained larger variance in BMI than 167 
any single analyte (Supplementary Fig. 3b–e). These results indicate that the omics-based BMI models 168 
explain a larger portion of the variation in BMI than any single analyte. 169 
 170 

Metabolic heterogeneity within standard BMI classes underlies the high rate of misclassification 171 

Although the omics-based BMIs concordantly represented the characteristics of BMI (Fig. 1c), we still 172 
observed that the difference between the measured and predicted BMIs was significantly correlated 173 
between the omics-based BMI models (Fig. 3a), implying the cases where the omics-based predictions 174 
deviated from the measured BMI were in fact a result of a different underlying metabolic state 175 
consistently reflected across the omics-based BMIs, rather than an artifact of the model generation. In 176 
addition, upon classifying the participants into the WHO international standard BMI classes based on 177 
either the measured or the omics-based BMI values, the misclassification rate was approximately 30% 178 
across all omics categories and BMI classes (Fig. 3b), consistent with the previously reported 179 
misclassification rates derived from the cardiometabolic health classification30,31. 180 

We then re-examined the BMI-associated features (Fig. 1c) while stratifying by measured 181 
BMI class and misclassification status; i.e., each participant was classified using both measured BMI 182 
and the predicted BMI (MetBMI or ProtBMI) based on the standard BMI cutoffs, and categorized into 183 
“Matched” or “Misclassified” when the BMI-based class matched or mismatched the omics-based 184 
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BMI class, respectively. The misclassified group of normal BMI class individuals exhibited 185 
significantly higher values of features that are positively associated with BMI, such as waist-to-height 186 
ratio, heart rate, and blood pressure, and significantly lower values of features that are negatively 187 
associated with BMI, such as daily physical activity measures, compared to the corresponding 188 
matched group of normal BMI class individuals (Fig. 3c), suggesting that a participant misclassified 189 
into the normal BMI class possesses an unhealthier molecular profile reflected by metabolomics and 190 
proteomics, similar to that of overweight and obese individuals, and corresponding to a MONW 191 
individual. Conversely, the misclassified group of obese BMI individuals exhibited significantly lower 192 
values of features that are positively associated with BMI and significantly higher values of features 193 
that are negatively associated with BMI compared to the corresponding matched group of obese BMI 194 
class individuals (Fig. 3c), suggesting that a participant misclassified into the obese BMI class has a 195 
healthier metabolomic and proteomic signature, similar to that of overweight and normal individuals, 196 
and corresponding to a MHO individual. Importantly, there was no difference in BMI PRS between 197 
the matched and misclassified groups (Fig. 3c), implying that the discordance between measured and 198 
omics-based BMIs may stem from lifestyle or environmental factors, rather than genetic propensity. In 199 
this analysis, although a statistical difference in age between the matched and misclassified groups of 200 
the normal BMI class was also observed (Fig. 3c), the age difference does not explain the above 201 
differences, as the statistical models were adjusted for age. The findings of concordant patterns 202 
between matched and misclassified groups of the normal and obese BMI classes were strengthened by 203 
consistent trends in multiple other known obesity-related health markers3,14,32–34, including 204 
triglyceride, high-density lipoprotein (HDL) cholesterol, adiponectin, high-sensitivity C-reactive 205 
protein (CRP), homeostatic model assessment for insulin resistance (HOMA-IR), glycohemoglobin 206 
(HbA1c), and vitamin D (Supplementary Fig. 5a). Taken together, these results suggest that the 207 
omics-based BMI models capture the heterogeneous metabolic health states of individuals which are 208 
not captured by standard (measured) BMI cutoffs. 209 

To further explore the molecule-level difference between the matched and misclassified 210 
groups, we applied unsupervised hierarchical clustering using proteomics and metabolomics data. We 211 
observed three clusters for the normal BMI class in a proteomic space defined with the strongest 15 212 
proteins in the ProtBMI models, and Cluster 3 and Cluster 2 were significantly enriched for the 213 
matched and misclassified group individuals, respectively (Fig. 3d). In Cluster 3, the expression levels 214 
of these proteins prominently corresponded to their contributing directions in the ProtBMI model. In 215 
contrast, this correspondence was blurred in Cluster 2, implying that the misclassification may emerge 216 
from dysregulation of strong predictor proteins. In addition, we observed three clusters for the obese 217 
BMI class in the same proteomic space, and Clusters 2 and 3 and Cluster 1 were significantly enriched 218 
for the matched and misclassified group individuals, respectively (Fig. 3e). Likewise, the strong 219 
predictor proteins in Cluster 1 (i.e., the misclassified individuals-enriched cluster in obese BMI class) 220 
exhibited weaker agreement between their expression levels and their contributing directions in the 221 
ProtBMI model. Furthermore, similar patterns were observed in a metabolomic space, clustering the 222 
strongest 15 metabolites in the MetBMI models (Supplementary Fig. 5b, c). These results imply that 223 
the conventional BMI classification failed to capture the differences in molecular regulatory states of 224 
blood metabolites and proteins. 225 
 226 

MetBMI reflects gut microbiome profiles better than BMI 227 

Gut microbiome causally affects host obesity phenotypes in a mouse model35 and obese human 228 
individuals generally exhibit lower bacterial diversity and richness36,37, while some meta-analyses of 229 
human studies suggest an inconsistent relationship between gut microbiome and obesity38,39. Given 230 
our previous finding that the association between blood metabolites and bacterial diversity is 231 
dependent on BMI19 and the current finding that the omics-based BMI models capture heterogeneous 232 
metabolic health states of individuals, we hypothesized that the omics-based BMIs represent gut 233 
microbiome diversity better than the measured BMI. As expected, while all BMI and omics-based 234 
BMIs were significantly associated with different metrics of gut microbiome α-diversity (the number 235 
of observed species, Shannon’s index, and Chao1 index), the omics-based BMIs explained a larger 236 
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portion of the variance in the gut microbiome α-diversity than BMI (Shannon’s index: ranging from 237 
7.55% (ChemBMI) to 10.95% (MetBMI) compared to 6.62% (BMI); Fig. 4a, b). In particular, 238 
MetBMI explained the largest portion of the variance, consistent with our previous observation that 239 
plasma metabolomics showed a much stronger correspondence to gut microbiome structure than either 240 
proteomics or clinical labs19. 241 

We further examined the predictive power of gut microbiome profiles for the omics-based 242 
BMI. We generated models classifying normal versus obese individuals using a random forest 243 
classifier trained on gut microbiome 16S amplicon sequencing data. The gut microbiome-based 244 
classifier for MetBMI categories showed significantly larger area under curve (AUC) in receiver 245 
operator characteristic (ROC), sensitivity, and precision compared to these performance parameters of 246 
the classifier for measured BMI categories (P = 0.007 (AUC), 0.007 (sensitivity), 0.019 (precision); 247 
Fig. 4c, d). Therefore, these results suggest that the MetBMI model outperforms BMI even in its 248 
capacity to reflect gut microbiome profiles. 249 
 250 

Metabolic health of the metabolically obese group was substantially improved following a 251 
positive lifestyle intervention 252 

In the Arivale program, personalized lifestyle coaching was provided, resulting in significantly 253 
positive clinical outcomes22. To investigate the corresponding longitudinal changes in omics-BMI 254 
models, we utilized the available longitudinal measurements from a subcohort of 608 participants (see 255 
Methods). Given the variability in time between data collection points, we estimated the mean 256 
transition of the measured and omics-based BMIs using a linear mixed model (LMM). Consistent with 257 
the previous analysis22, the mean BMI estimate for the overall cohort decreased during the program 258 
(Fig. 5a). The decrease of MetBMI was larger than that of BMI while the decrease of ProtBMI was 259 
minimal and even smaller than that of BMI (Fig. 5a), suggesting that plasma metabolomics are highly 260 
responsive to weight loss, while proteomics (measured from the same blood draw) are resistant to the 261 
same lifestyle coaching. Subsequently, we generated LMMs stratified by baseline BMI class, and 262 
confirmed that a significant decrease in the mean BMI estimate was observed in the overweight and 263 
obese BMI classes, but not in the normal BMI class (Fig. 5b). Concordantly, the mean estimates of 264 
ProtBMI and ChemBMI exhibited negative changes over time in the overweight and obese BMI 265 
classes, but not in the normal BMI class (Fig. 5b). However, the mean estimate of MetBMI exhibited a 266 
significant decrease even in the normal BMI class (Fig. 5b), suggesting that metabolomics data may 267 
capture information about the metabolic health response to lifestyle intervention, beyond baseline 268 
BMI class or changes in BMI and other omics. 269 

Since we revealed that multiple metabolic health states exist within the standard BMI classes 270 
(Fig. 3), we further investigated the difference between misclassification strata based on the baseline 271 
MetBMI class. In the normal baseline BMI class, while the mean BMI estimate remained constant in 272 
both the matched and misclassified groups, the mean MetBMI estimate exhibited larger reduction in 273 
the misclassified group than the matched group (Fig. 5c), suggesting that MONW participants 274 
improved their metabolic health to a greater extent than metabolically healthy, normal-weight 275 
(MHNW) participants. Likewise, in the obese baseline BMI class, while the decrease in the mean BMI 276 
estimate was not significantly different between the matched and misclassified groups, the decrease in 277 
the mean MetBMI estimate was larger in the matched group than in the misclassified group (Fig. 5d), 278 
suggesting that MUO participants improved their metabolic health to a greater extent than MHO 279 
participants. Altogether, these results suggest that metabolic health was substantially improved during 280 
the program, in accordance with the baseline metabolomic state rather than the baseline BMI class. 281 
 282 

Plasma analyte correlation network in the metabolically obese group reverted back to normal 283 
state following lifestyle intervention 284 

Finally, we explored longitudinal changes in plasma analytes correlation network, focusing on the 285 
metabolically obese group. Based on the importance of baseline metabolomic state (Fig. 5c, d), we 286 
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first assessed relationships between each plasma analyte–analyte correlation and baseline MetBMI, 287 
using their interaction term of a generalized linear model (GLM) for each analyte–analyte pair in 608 288 
participants (See Methods). In this type of model, the statistical test assesses whether the relationship 289 
between any two analytes is dependent on a third variable (in this case, baseline MetBMI). Among 290 
608,856 pairwise relationships of plasma analytes, 91 analyte–analyte correlation pairs derived from 291 
75 metabolites, 26 proteins, and 13 clinical lab tests were significantly modified by baseline MetBMI 292 
(FDR < 0.05). Subsequently, we assessed longitudinal changes of the significant 91 pairs, using their 293 
interaction term (days in the program) of a generalized estimating equation (GEE) for each pair in 184 294 
metabolically obese participants (See Methods). Among the significant 91 pairs from the GLM 295 
models, 14 analyte–analyte correlation pairs were significantly modified by days in the program (Fig. 296 
6a). The significant 14 pairs were mainly derived from metabolites (16 metabolites, 3 clinical lab 297 
tests). For instance, homoarginine is a recently discovered biomarker of CVD40 and was a robust 298 
positive predictor in the MetBMI and CombiBMI models (Fig. 2a and Supplementary Fig. 4a), while 299 
phenyllactate (PLA) is a gut microbiome-derived phenylalanine derivative having antimicrobial 300 
activity and natural antioxidant activity41,42; and the positive correlation between homoarginine and 301 
PLA was observed in metabolically obese group at baseline (Fig. 6b). However, this correlation in the 302 
metabolically obese group was attenuated during the program (Fig. 6c), implying that some types of 303 
plasma metabolic regulation specific to the metabolically obese group was improved during the 304 
program. 305 

 306 

Discussion 307 

Obesity is a significant risk factor for many chronic diseases3–6. The heterogeneous nature of human 308 
health conditions, with variable manifestation ranging from metabolic abnormalities to cardiovascular 309 
symptoms, calls for a deeper molecular characterization in order to optimize wellness and reduce the 310 
current global epidemic of chronic diseases. In this study, we demonstrated that obesity profoundly 311 
perturbs human physiology, as reflected across all the omics modalities studied. The key findings of 312 
this study are: (1) machine learning-based multiomic BMI was a more reliable measure of metabolic 313 
health than traditional BMI, while maintaining a high level of interpretability and intuitiveness 314 
attributed to the original metric (Fig. 1–3); (2) metabolomic reflection of obesity exhibited the 315 
strongest correspondence to gut microbiome profiles in all omics studied (Fig. 4); (3) the plasma 316 
metabolomics exhibited stronger (and/or earlier) response to lifestyle coaching than measured BMI, 317 
while the plasma proteomics exhibited a weaker (and/or more delayed) response (Fig. 5a, b); (4) 318 
MONW (i.e., normal-weight by BMI but overweight or obese by MetBMI) participants exhibited a 319 
greater improvement in metabolic state (but not in weight loss itself) in response to lifestyle coaching 320 
compared to MHNW (i.e., normal-weight by both BMI and MetBMI) participants, and vice versa for 321 
MHO and MUO participants (Fig. 5c, d); (5) dozens of analyte–analyte associations were modified by 322 
the metabolic state, stressing the functional context dependence of many blood-measured analytes 323 
(Fig. 6).  324 

Multiple observational studies have explored obesity biomarkers. With regard to obesity, the 325 
involvements of insulin/insulin-like growth factor (IGF) axis and chronic low-grade inflammation 326 
have been discussed in the context of obesity-related disease risks5,6, backed by robust findings about 327 
the association of obesity with IGFBP1/2 (−), adipokines such as LEP (+), adiponectin (−), FABP4 328 
(+), and ADM (+) and proinflammatory cytokines such as interleukin 6 (IL6, +)32,43. Consistent with 329 
these well-known changes, we observed the positive significant association of BMI with LEP, 330 
FABP4, IL1RN, IL6, ADM, and insulin and the negative association with IGFBP1/2 and adiponectin 331 
(Fig. 2c, d). Importantly, all these known biomarkers were incorporated into the omics-based BMI 332 
models, and most of them emerged as the robustly retained strong components of the models (Fig. 2a 333 
and Supplementary Fig. 4b, c). At the same time, we observed that RAGE explains a relatively small 334 
proportion of the variance in BMI (Fig. 2c), while being a strong negative predictive variable in all ten 335 
models of both ProtBMI and CombiBMI (Fig. 2a and Supplementary Fig. 4b). The importance of 336 
soluble RAGE (sRAGE) has been gradually highlighted in T2DM and CVD44, with several reports on 337 
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the negative association of sRAGE with BMI45. Therefore, the omics-based BMI may not only reflect 338 
obesity, but also reflect early transition to clinical manifestation of obesity-related chronic diseases. 339 

Likewise, many epidemiological studies have revealed metabolomic biomarkers for 340 
obesity46,47. In line with the previous knowledge, we confirmed the positive significant association of 341 
BMI with mannose, uric acid (urate), and glutamate and the negative correlation with asparagine and 342 
glycine (Fig. 2b), and all of them were robustly incorporated into all ten models of MetBMI and 343 
CombiBMI (Fig. 2a and Supplementary Fig. 4a). Furthermore, we observed that many lipids emerged 344 
as the strong components in the MetBMI and CombiBMI models; in particular, 345 
glycerophosphocholines (GPCs) are negative variable components while sphingomyelins (SMs) are 346 
positive ones (Fig. 2a and Supplementary Fig. 4a), even though both have a phosphocholine group in 347 
common. Although lipids were traditionally regarded as positively associated factors with obesity, 348 
recent metabolomics studies have uncovered variable trends of fatty acid species; e.g., plasma 349 
lysophosphatidylcholines (LPCs) are decreased in obese mice (high-fat diet model)48, which was in 350 
accordance with our analysis (e.g., LPC(18:1), described as 1-oleoyl-GPC(18:1), in Fig. 2b and 351 
Supplementary Fig. 4b). However, because there are many combinations of acyl residues in lipids and 352 
many potential confounding factors with obesity, a meta-analysis to systematically understand the 353 
species-level lipid biomarkers for obesity is still challenging46,47. Our approach, applying machine 354 
learning to metabolomics data, addresses this challenge by automatically and systematically providing 355 
a molecular signature of obesity, while reflecting the versatile and complex metabolite species. 356 
Altogether, the omics-based BMI can be regarded as a multidimensional metric of obesity, possessing 357 
molecular mechanistic information. Although targeted measurement of a specific metrics (e.g., body 358 
composition) or biomarker provides a detailed, albeit narrow, view into the anthropometric parameters 359 
of obesity, the blood multiomic measurements can therefore provide a broader view into its 360 
heterogeneous molecular dimensions. 361 

Recently, Cirulli and colleagues have reported a machine learning-based model of BMI 362 
computed from blood metabolomics captured obesity-related phenotypes20. Their main model 363 
explained 39.1% of the variance in BMI, while our MetBMI model exhibited higher explained 364 
variance (68.9%; Fig. 2b). Other than the difference in studied cohorts, the performance gap may also 365 
result from the difference in modeling strategies. Cirulli and colleagues stringently selected 49 366 
metabolites out of their metabolomics panel (1,007 metabolites) based on a pre-screening for 367 
significant association with BMI, and subsequently applied a tenfold CV implementation of the Ridge 368 
or LASSO method. In contrast, we used the LASSO method for feature selection, applying it to the 369 
full metabolomics panel (766 metabolites). In addition to the increased number of modeled 370 
metabolites, our higher performance may stem from the existence of metabolites which were critical 371 
for BMI prediction but not significantly associated with BMI. In fact, our MetBMI model contained 372 
many metabolites which were weakly associated with BMI but robustly retained across all ten models 373 
(Fig. 2b and Supplementary Fig. 4a). At the same time, many of their 49 metabolites (14–20 374 
metabolites among the 31–41 corresponding metabolites in our metabolomics panel) were also 375 
retained in at least one of ten MetBMI models. Therefore, our strategy of feature selection through 376 
machine learning may be preferable for predicting BMI from metabolomics. 377 

A recent study that investigated multiomic changes in response to weight perturbation 378 
demonstrated that some weight gain-associated blood signatures reverted during a subsequent weight 379 
loss, while others persisted49. Interestingly, we revealed that MetBMI is more responsive to lifestyle 380 
intervention than BMI and ChemBMI, while ProtBMI is more resistant (Fig. 5a, b). Our analyses of 381 
components in the omics-based BMI models (Fig. 2 and Supplementary Fig. 3b–e, 4) suggested that 382 
various metabolites share a wider spread of the feature importance, while a small subset of proteins 383 
(~5 proteins) predominantly reflects obesity profiles. Therefore, the effect of lifestyle coaching may 384 
consist of small additive contributions in the short range rather than affecting the root cause. However, 385 
longitudinal analysis with longer periods must be investigated to infer the physiological meaning of 386 
the metabolomic responsiveness and the proteomic resistance. For instance, it is possible that ProtBMI 387 
shows a delayed response to the same weight loss (over a span greater than a year measured presently; 388 
Fig. 5a), indicating blood metabolites and proteins may be early and late responders to a lifestyle 389 
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intervention, respectively. If the difference between BMI and the omics-based BMIs remains constant 390 
even after one year, it is reinforced that blood metabolites and proteins are more and less sensitive 391 
factors of weight loss, respectively. In either scenario, the advantage of monitoring blood multiomics 392 
during weight loss programs would be supported as a tool to keep participants motivated, since 393 
lifestyle changes generally take longer to manifest as weight loss. At the same time, long-term 394 
maintenance of the improvement is an important challenge for lifestyle interventions. Although there 395 
is variability between studies, a previous study indicated that only ≈20% of overweight individuals 396 
successfully maintained weight loss50, raising the possibility that BMI and the other omics-based 397 
BMIs revert back to the baseline after one year of the Arivale program. Nevertheless, previous studies 398 
revealed that lifestyle interventions had benefits in preventing diabetes incidence as long as 20 years 399 
post-intervention even if body weight was regained51,52, implying that the observed larger 400 
improvement of MetBMI compared to BMI may persist in the longer term. Hence, deeper 401 
investigations on our findings are required, especially the long-term dynamics of the MetBMI and 402 
ProtBMI responses, which may provide a foothold to develop a scientific strategy to maintain 403 
metabolic health in the long term. In addition to the studied time period, there are additional 404 
limitations to be noted in this study. This study was not designed as a randomized control trial, and we 405 
cannot strictly evaluate the effectiveness of the lifestyle intervention (e.g., improvement in obese 406 
group due to the regression-toward-the-mean effect). As an observational study derived from a 407 
consumer facing cohort, generalizability of the findings may be limited. Our measurements did not 408 
cover all biomolecules in blood; in particular, proteomics was based on targeted Olink panels. Hence, 409 
our findings on metabolomic and proteomic states are restricted to the studied space. Nevertheless, 410 
this study will serve as a valuable resource for robustly characterizing metabolic health from the blood 411 
and identifying actionable targets for health interventions. 412 

  413 
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Methods 414 

Study cohort 415 

This study relied on a cohort consisting of over 5,000 individuals who participated in a wellness 416 
program offered by a currently closed commercial company (Arivale Inc., Washington, USA). We 417 
collected personal, dense, dynamic data (PD3) clouds on individuals in this program between 2015–418 
2019. An individual was eligible for enrollment if the individual was over 18 years old, not pregnant, 419 
and a resident of any US state except New York; participants were primarily recruited from 420 
Washington, California, and Oregon. During the Arivale program, each participant was provided 421 
personalized lifestyle coaching via telephone by registered dietitians, certified nutritionists, or 422 
registered nurses (see the previous paper22 for details). Participants also had access to their clinical 423 
data via an online data dashboard. This study was conducted with deidentified data of the participants 424 
who had consented to the use of their anonymized data in research. All procedures were approved by 425 
the Western Institutional Review Board (WIRB) with Institutional Review Board (IRB) (Study 426 
Number: 20170658 at Institute for Systems Biology and 1178906 at Arivale). 427 

In this study, to confidently compare the association between Body Mass Index (BMI) and 428 
host phenotypes across multiomics, we limited our study cohort to only the participants whose 429 
datasets contained (1) all main omic measurements (metabolomics, proteomics, clinical lab tests) from 430 
the same first blood draw, (2) genetic information, and (3) a baseline BMI measurement within ±1.5 431 
month from the first blood draw. We also eliminated “outlier” participants whose baseline BMI was 432 
beyond ±3 standard deviations from mean in the cohort distribution. The final cohort consists of 1,277 433 
participants, whose demographics (Supplementary Fig. 1) were confirmed to be consistent with the 434 
overall Arivale demographics previously reported in our studies19,22–26. 435 
 436 

Data collection and PD3 clouds 437 

The PD3 clouds consist of human genomes, longitudinal measurements of metabolomics, proteomics, 438 
clinical lab tests, gut microbiomes, and wearable devices, and health/lifestyle questionnaires. 439 
Peripheral venous blood draws for all measurements were performed by trained phlebotomists at 440 
LabCorp (Laboratory Corporation of America Holdings, North Carolina, USA) or Quest (Quest 441 
Diagnostics, New Jersey, USA) service centers. For some participants, saliva was also sampled at 442 
home to measure analytes such as diurnal cortisol and dehydroepiandrosterone (DHEA) using a 443 
standardized kit (ZRT Laboratory, Oregon, USA). Likewise, stool samples for gut microbiome 444 
measurements were obtained by participants at home using a standardized kit (DNA Genotek, Inc., 445 
Ottawa, Canada). 446 

– Genome 447 

DNA extracted from whole blood underwent whole genome sequencing or single-nucleotide 448 
polymorphisms (SNP) microarray genotyping. Genetic ancestry was calculated with principal 449 
components (PCs) using a set of ~100,000 ancestry-informative SNP markers as described 450 
previously22. Polygenic risk scores were constructed using publicly available summary 451 
statistics from published genome-wide association studies (GWAS) as described previously24. 452 
 453 

– Blood-measured omics 454 

Metabolomic data was generated by Metabolon, Inc. (North Carolina, USA), using ultra-high-455 
performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for plasma 456 
derived from whole blood samples. Proteomic data was generated using proximity extension 457 
assay (PEA) for plasma derived from whole blood samples with several Olink Target panels 458 
(Olink Proteomics, Uppsala, Sweden), and measurements with the Cardiovascular II, 459 
Cardiovascular III and Inflammation panels were used in this study since the other panels 460 
were not necessarily applied to all samples. All clinical laboratory tests were performed by 461 
LabCorp or Quest in a Clinical Laboratory Improvement Amendments (CLIA)-certified lab, 462 
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and measurements by LabCorp were selected in this study to eliminate potential differences 463 
between vendors. In this study, analytes missing in more than 10% of the baseline samples 464 
were removed from each omic dataset, and observations missing in more than 10% of the 465 
remaining analytes were further removed. The final filtered metabolomics, proteomics, and 466 
clinical labs consist of 766 metabolites, 274 proteins, 71 clinical lab tests, respectively 467 
(Supplementary Data 1). 468 
 469 

– Gut microbiome 470 

Gut microbiome data was generated based on 16S amplicon sequencing of the V4 region 471 
using a MiSeq sequencer (Illumina, Inc., California, USA) for DNA extracted from stool 472 
samples, as previously described25. All samples were first rarefied to an even sampling depth 473 
of 38,813, the minimum number of reads per sample in the cohort. Gut microbiome α-474 
diversity was calculated at the amplicon sequence variant (ASV) level using Shannon’s index 475 
calculated by 𝐻 = −∑ 𝑝! ln 𝑝!"

!#$ , where 𝑝! is the proportion of species i to the total number 476 
of species S in a community represented by ASVs or using Chao1 diversity score calculated 477 
by 𝑆Chao1 = 𝑆obs +

,!"

-,"
, where 𝑆obs is the number of observed ASVs, 𝑛$ is the number of 478 

singletons (ASVs captured once), and 𝑛- is the number of doubletons (ASVs captured twice). 479 
 480 

– Anthropometrics, saliva-measured analytes, daily physical activity measures 481 

Anthropometrics including weight, height, and waist circumference and blood pressure were 482 
measured at the time of blood draw and also reported by participants, which generated diverse 483 
timing and number of observations depending on each participant. The measured weight and 484 
height simultaneously generated BMI measurements with dividing the weight by the squared 485 
height. Measurements of saliva samples were performed in the testing laboratory of ZRT 486 
Laboratory. Daily physical activity measures such as heart rate, moving distance, number of 487 
steps, burned calories, floors climbed, and sleep quality were tracked using the Fitbit 488 
wearable device (Fitbit, Inc., California, USA). To manage variations between days, monthly 489 
averaged data was used for these daily measures. In this study, the baseline measurement for 490 
these longitudinal measures was defined with the closest observation to the first blood draw 491 
per participant and data type, and each dataset was eliminated from analyses when its baseline 492 
measurement was beyond ±1.5 month from the first blood draw. 493 

 494 

Generation of omics-based BMI models 495 

For each omic dataset, missing values were first imputed with a random forest (RF) algorithm using 496 
Python missingpy (version 0.2.0) library corresponding to MissForrest in R53. For sex-stratified 497 
models, the datasets after imputation were divided into sex-dependent datasets. Each value was 498 
subsequently standardized with the Z-score using mean and standard deviation per analyte. Then, ten 499 
iterations of least absolute shrinkage and selection operator (LASSO) modeling with tenfold cross-500 
validation (CV) were performed for the log-transformed BMI and the processed omic datasets using 501 
Python scikit-learn (version 0.22.1) library. Training and testing datasets were generated by splitting 502 
participants into ten sets with one set as a “testing dataset” and the remaining nine sets as a “training 503 
dataset”, and iterating all combinations over those ten sets; i.e., overfitting was controlled using an 504 
internal tenfold CV in each “training dataset”. Consequently, this procedure generated a “testing 505 
dataset”-derived BMI prediction value for each participant and ten fitted models for each omics. 506 
Model performance was conservatively estimated by the R2 score from out-of-sample predictions. 507 
Pearson’s r was calculated using measured and predicted BMI values for the entire cohort. 508 

For the LASSO-modeling iterations while dropping the strongest variable, the generation of 509 
ten LASSO models was repeated as the same as the above except for eliminating the strongest 510 
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variable analyte from the dataset at the end of each iteration. The strongest variable was defined as the 511 
variable that was retained across ten models and had the highest absolute value of mean β-coefficient. 512 

For longitudinal models, the standardization distribution and training dataset were restricted 513 
to the baseline measurements from all 1,277 participants and only one LASSO model with tenfold CV 514 
was generated per sex-stratified cohort, because those measurements were minimally affected by 515 
lifestyle coaching and each participant had a different number of observations. 516 
 517 

Generation of obesity-classifying models 518 

To compare the ability of the gut microbiome to accurately distinguish between obese and normal 519 
weight individuals across different omics measurements of BMI (Fig. 4c, d), ASVs were collapsed 520 
into species, genus, family, order, class, and phylum, respectively, and merged into a single dataframe 521 
using the SILVA database (version 132). This dataframe served as input for a RF classifier 522 
implemented with Python scikit-learn library. Briefly, two classifiers were trained on taxon 523 
abundances, one predicting whether an individual is obese based on observed BMI, and one predicting 524 
whether an individual is obese based on metabolomics-based BMI. Both models were constructed 525 
using RF with a fivefold CV scheme. In this approach, 80% of the data is used for training while the 526 
remaining 20% is used as a testing set. This process is repeated fivefold where each participant serves 527 
as part of the testing set once. Performance for each of the classifiers was then assessed by averaging 528 
the performance across the five testing sets. 529 
 530 

Longitudinal analysis for BMI and omics-based BMIs 531 

For longitudinal analyses, 608 participants, whose datasets contained more than two time-series 532 
datasets of both BMI and omics during 18 months after enrollment, were further extracted from the 533 
study cohort of 1,277 participants. To estimate the mean transition of the measured and omics-based 534 
BMIs, a linear mixed model (LMM) for the rate of change in each measured BMI or sex-stratified 535 
LASSO models-predicted BMI was generated with random intercepts for participants and random 536 
slopes for days in the program, following the previous approach22. As the fixed effects regarding time, 537 
linear regression splines with knots at 0, 6, 12, and 18 months were applied to days in program to fit 538 
time as a continuous variable rather than a categorical variable because the timing of data collection 539 
was different between the participants, allowing for differences in the trajectory of changes throughout 540 
the program. In addition to the linear regression splines for days in the program, each LMM included 541 
sex, baseline age, ancestry PCs, and meteorological seasons as fixed effects to adjust potential 542 
confounding effects. For the baseline BMI class-stratified LMMs, the interaction terms between the 543 
categorical baseline BMI-based class and the linear regression splines for time were further added. All 544 
LMMs were modeled using Python statsmodels (version 0.11.1) library. Of note, the underweight 545 
participants were eliminated in the LMMs stratified with baseline BMI class because the sample size 546 
was too small for convergence. 547 
 548 

Plasma analyte correlation network analysis 549 

In advance, outlier values which were beyond ±3 standard deviations from mean in the longitudinal 550 
cohort distribution of 608 participants were eliminated from the dataset per analyte, and seven clinical 551 
lab tests which became almost invariant across the participants were eliminated from analyses, 552 
allowing convergence in the following modeling. Against each analyte, values were converted with a 553 
transformation method producing the lowest skewness (e.g., no transformation, the logarithm 554 
transformation for right skewed distribution, the square root transformation with mirroring for left 555 
skewed distribution) and standardized with the Z-score using mean and standard deviation. 556 

Against 608,856 pairwise combinations of the analytes (766 metabolites, 274 proteomics, 64 557 
clinical lab tests), generalized linear models (GLMs) for the baseline measurements of 608 558 
participants were independently generated with the Gaussian distribution and identity link function 559 
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using Python statsmodels library. Each GLM constitutes of an analyte as dependent variable, another 560 
analyte and the baseline MetBMI as independent variables with their interaction term, and sex, 561 
baseline age, and ancestry PCs as covariates. The significant analyte–analyte correlation pairs 562 
modified by the baseline MetBMI were obtained based on the β-coefficient (two-sided t-test) of the 563 
interaction term between independent variables in GLM, while correcting the multiple-hypothesis 564 
testing with the Benjamini–Hochberg method (false discovery rate (FDR) < 0.05). 565 

Against the significant 91 pairs (75 metabolites, 26 proteomics, 13 clinical lab tests) from the 566 
GLM analysis, generalized estimating equations (GEEs) for the longitudinal measurements of 184 567 
metabolically obese participants were independently generated with the exchangeable covariance 568 
structure using Python statsmodels library. Each GEE constitutes of an analyte as dependent variable, 569 
another analyte and days in the program as independent variables with their interaction term, and sex, 570 
baseline age, ancestry PCs, and meteorological seasons as covariates. The significant analyte–analyte 571 
correlation pairs modified by days in the program were obtained based on the β-coefficient (two-sided 572 
t-test) of the interaction term between independent variables in GEE, while correcting the multiple-573 
hypothesis testing with the Benjamini–Hochberg method (FDR < 0.05). 574 
 575 

Statistical analysis 576 

All data preprocessing and ordinary least squares (OLS) regression analyses were performed using 577 
Python NumPy (version 1.18.1), pandas (version 1.0.3), SciPy (version 1.4.1) and statsmodels 578 
libraries. Only the baseline datasets were utilized in regression analyses, and each numeric variable 579 
was scaled and centered in advance. When assessing available numeric physiological features and 580 
obesity-related health markers in the PD3 clouds, the baseline dataset of each metric variable was also 581 
preprocessed with the elimination steps for outliers and invariant variables and the conversion step for 582 
skewness reduction, as same as those described in the above subsection except for the basis of whole 583 
study cohort distribution. Relationships of the preprocessed numeric physiological features with the 584 
measured or omics-based BMIs (Fig. 1c) were independently assessed using OLS linear regression 585 
with the log-transformed measured or omics-based BMI as dependent variable and sex, age, and 586 
ancestry PCs as covariates, while correcting the multiple-hypothesis testing with the Benjamini–587 
Hochberg method (FDR < 0.05). Relationships between BMI and analytes which were retained in at 588 
least one of ten LASSO models (210 metabolites, 75 proteins, 42 clinical lab tests) (Fig. 2b–d) were 589 
independently assessed using OLS linear regression with the log-transformed BMI as dependent 590 
variable and sex, age, and ancestry PCs as covariates, while correcting the multiple-hypothesis testing 591 
with the Benjamini–Hochberg method (FDR < 0.05). Differences in the BMI-associated features and 592 
obesity-related health markers between the matched and misclassified groups in the normal or obese 593 
BMI class (Fig. 3c and Supplementary Fig. 5a) were independently assessed using OLS linear 594 
regression with sex, age, and ancestry PCs as covariates (sex and ancestry PCs as covariates for the 595 
regression of age). Misclassification distribution in hierarchical clustering (Figs. 3d, e and 596 
Supplementary Fig. 5b, c) was assessed using Fisher’s exact tests with the Bonferroni correction 597 
(family-wise error rate (FWER) < 0.05). Relationships between measured or omics-based BMI and α-598 
diversity metrics (Fig. 4a, b) were independently assessed using OLS linear regression with α-599 
diversity as dependent variable and sex, age, and ancestry PCs as covariates. Difference in classifier 600 
performance parameters (Fig. 4d) was assessed using Student’s t-test. All statistical tests were 601 
performed using a two-sided hypothesis. 602 
 603 

Data visualization 604 

Almost all results were visualized using Python matplotlib (version 3.2.1) and seaborn (version 605 
0.10.1) libraries. Data were summarized as the mean ± standard error of the mean (s.e.m.), the mean 606 
with 95% confidence interval (CI), or the boxplot (median: center line, 95% CI around median: notch, 607 
[Q1, Q3]: box limits, [max(minimum value, Q1 − 1.5 × IQR), min(maximum value, Q3 + 1.5 × IQR)]: 608 
whiskers, where Q1, Q3, and IQR are the 1st quartile, the 3rd quartile, and the interquartile range, 609 
respectively), as indicated in each figure legend. For presentation purpose, s.e.m. and CI were 610 
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simultaneously calculated during visualization using seaborn barplot or boxplot (utilizing matplotlib) 611 
application programming interface (API) with default setting (1,000 times bootstrapping or a 612 
Gaussian-based asymptotic approximation, respectively). The OLS linear regression line with 95% CI 613 
was simultaneously generated during visualization using seaborn lmplot API with default setting 614 
(1,000 times bootstrapping). Hierarchical clustering was simultaneously performed during 615 
visualization using seaborn clustermap API (utilizing SciPy library) with the Ward’s linkage method 616 
for Euclidean distance. The plasma analyte correlation network was visualized with a circos plot using 617 
R circlize (version 0.4.11) package54. 618 

  619 
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Figures 751 

 752 
Figure 1. Plasma multiomics captures 48–78% of the variance in BMI. 753 

a Scatterplot of measured Body Mass Index (BMI) versus predicted BMI using least absolute 754 
shrinkage and selection operator (LASSO) with tenfold cross-validation (CV). The solid line in each 755 
panel is the ordinary least squares (OLS) linear regression line with 95% confidence interval (CI), and 756 
the dotted line is measured BMI = predicted BMI. n = 1,277 participants. b Mean out-of-sample R2 757 
across the tenfold CV for each omics. Data: mean ± s.e.m., n = 10 LASSO models. c β-coefficients for 758 
numeric physiological feature in each OLS linear regression model with BMI or omics-based BMI as 759 
dependent variable and sex, age, and ancestry principal components (PCs) as covariates. All presented 760 
30 features are significantly associated with at least one of BMI or omics-based BMIs in the 761 
Benjamini–Hochberg method (false discovery rate (FDR) < 0.05; *P < 0.05, **P < 0.01, ***P < 762 
0.001). BMI: measured BMI, MetBMI: metabolomics-based BMI, ProtBMI: proteomics-based BMI, 763 
ChemBMI: clinical chemistries-based BMI, CombiBMI: combined omics-based BMI, PRS: polygenic 764 
risk score, LDL: low-density lipoprotein, n: the number of participants. Data: β-coefficient with 95% 765 
CI. 766 
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 768 
Figure 2. Omics-based BMI captures the variance in BMI better than any single analyte. 769 

a β-coefficient estimates for the variables that were retained across all ten combined omics-based 770 
Body Mass Index (BMI) models (132 analytes). Color of each row corresponds to the analyte category 771 
(blue: 77 metabolites, red: 51 proteins, green: 4 clinical lab tests). Data: median (center line), [Q1, Q3] 772 
(box limits), [max(minimum value, Q1 − 1.5 × IQR), min(maximum value, Q3 + 1.5 × IQR)] 773 
(whiskers), where Q1, Q3, and IQR are the 1st quartile, the 3rd quartile, and the interquartile range, 774 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.20.22269601doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.20.22269601
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 20 of 26 

respectively; n = 10 least absolute shrinkage and selection operator (LASSO) models. b–d Percentage 775 
of variance in BMI explained by each metabolite (b), protein (c), or clinical lab test (d). BMI was 776 
independently regressed to each analyte which was retained in at least one of ten LASSO models (210 777 
metabolites, 75 proteins, 42 clinical lab tests). The strongest 30 analytes among the analytes 778 
significantly associated with BMI (180 metabolites, 63 proteins, 30 clinical lab tests) are presented. 779 
Significance was assessed using ordinary least squares (OLS) linear regression with sex, age, and 780 
ancestry principal components (PCs) as covariates, while correcting for multiple-hypothesis testing 781 
with the Benjamini–Hochberg method (false discovery rate (FDR) < 0.05). Each omics-based BMI is 782 
included for comparison (MetBMI: metabolomics-based BMI, ProtBMI: proteomics-based BMI, 783 
ChemBMI: clinical chemistries-based BMI). 784 
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 786 
Figure 3. Metabolic heterogeneity within standard BMI classes underlies the high rate of 787 
misclassification. 788 
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a Scatterplot and distribution of difference between Body Mass Index (BMI) and omics-based BMI. 789 
BMI: measured BMI, MetBMI: metabolomics-based BMI, ProtBMI: proteomics-based BMI, 790 
ChemBMI: clinical chemistries-based BMI, CombiBMI: combined omics-based BMI, r: Pearson’s 791 
correlation coefficient, n: the number of participants. The line in histogram panels indicates the kernel 792 
density estimate. b Misclassification rate of BMI-based class. Range of previously reported 793 
misclassification rate30,31 is highlighted with orange-colored lines. Note that the underweight BMI 794 
class is not presented due to small sample size, and its misclassification rate is 80% against combined 795 
omics and 100% against the others. c Comparison of BMI-associated feature between the matched and 796 
misclassified groups in the normal or obese BMI class. Data: median (center line), 95% confidence 797 
interval (CI) around median (notch), [Q1, Q3] (box limits), [max(minimum value, Q1 − 1.5 × IQR), 798 
min(maximum value, Q3 + 1.5 × IQR)] (whiskers), where Q1, Q3, and IQR are the 1st quartile, the 3rd 799 
quartile, and the interquartile range, respectively. *P < 0.05, **P < 0.01, ***P < 0.001 according to 800 
ordinary least squares (OLS) linear regression with sex, age, and ancestry principal components (PCs) 801 
as covariates (sex and ancestry PCs as covariates for the regression of age). d, e Heatmap with 802 
hierarchical clustering of the normal (d) and obese (e) BMI class using proteomics data. The strongest 803 
15 proteins among the analytes retained across more than eight ProtBMI models and significantly 804 
associated with BMI were used as variables. Z-score was calculated from the overall population. n: the 805 
number of participants, P: the adjusted P-value in multiple-hypothesis testing for the misclassification 806 
distribution in each cluster using two-sided Fisher’s exact tests with the Bonferroni correction. 807 
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 809 
Figure 4. Metabolomics-based BMI reflects gut microbiome profiles better than BMI. 810 

a Percentage of variance in gut microbiome α-diversity that is explained by each Body Mass Index 811 
(BMI) or omics-based BMI. BMI: measured BMI, MetBMI: metabolomics-based BMI, ProtBMI: 812 
proteomics-based BMI, ChemBMI: clinical chemistries-based BMI, CombiBMI: combined omics-813 
based BMI. b β-coefficient for BMI or omics-based BMI in each ordinary least squares (OLS) linear 814 
regression model with α-diversity as dependent variable and sex, age, and ancestry principal 815 
components (PCs) as covariates. The dashed line indicates the β-coefficient estimate for BMI. Data: β-816 
coefficient with 95% confidence interval (CI). c Receiver operator characteristic (ROC) curve of a gut 817 
microbiome-based model classifying participants to the normal vs. obese class. Gut microbiome 16S 818 
ribosomal RNA datasets were used for generating the random forest (RF) classifier with fivefold 819 
cross-validation (CV). Each ROC curve indicates the average curve across five RF models. The red 820 
dashed line indicates a random classification line. AUC: area under curve. d Comparison of AUC of 821 
ROC curve, sensitivity, specificity, and precision between the classifying models of BMI and 822 
MetBMI. Each performance parameter was calculated as the mean out-of-sample value across the 823 
fivefold CV. Data: mean with 95% CI, n = 5 RF models. 824 
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 826 
Figure 5. Metabolic health of the metabolically obese group was substantially improved 827 
following a positive lifestyle intervention. 828 

a Longitudinal change in Body Mass Index (BMI) or omics-based BMI for overall cohort. Rate of 829 
change in BMI and omics-based BMIs was estimated using each linear mixed model (LMM) with 830 
random intercepts for participants and random slopes for days in the program (see Methods). n = 608 831 
participants. b Longitudinal change in BMI or omics-based BMI for each baseline BMI-based class. 832 
Rate of change in BMI and omics-based BMIs was estimated using each baseline BMI-based class-833 
stratified LMM with random intercepts for participants and random slopes for days in the program. n 834 
= 222 (Normal), 185 (Overweight), 196 (Obese) participants. c, d Longitudinal change in BMI or 835 
metabolomics-based BMI of the participants misclassified with the normal (c) or obese (d) BMI class. 836 
n = 156 (Normal, Matched), 66 (Normal, Misclassified), 151 (Obese, Matched), 45 (Obese, 837 
Misclassified) participants. a–d The dashed line and gray shading correspond to the baseline value of 838 
each estimate and the 2nd period of linear regression spline for time, respectively. BMI: measured 839 
BMI, MetBMI: metabolomics-based BMI, ProtBMI: proteomics-based BMI, ChemBMI: clinical 840 
chemistries-based BMI. Data: mean with 95% confidence interval (CI). 841 
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 843 
Figure 6. Plasma analyte correlation network in the metabolically obese group reverted back to 844 
normal state following lifestyle intervention. 845 

a Circos plot of cross-omic interactions modified by metabolomics-based Body Mass Index (MetBMI) 846 
and days in the program. Among 608,856 pairwise relationships of plasma analytes (766 metabolites, 847 
274 proteomics, 64 clinical lab tests) from 608 participants, 91 analyte–analyte pairs significantly 848 
modified by the baseline MetBMI are presented (75 metabolites, 26 proteomics, 13 clinical lab tests), 849 
whose significance was assessed using their interaction term in each generalized linear model (GLM; 850 
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see Methods) while correcting the multiple-hypothesis testing with the Benjamini–Hochberg method 851 
(false discovery rate (FDR) < 0.05). Among the significant 91 pairs from 184 metabolically obese 852 
participants, 14 analyte–analyte pairs significantly modified by days in the program are highlighted by 853 
line width and label font size (16 metabolites, 3 clinical lab tests), whose significance was assessed 854 
using their interaction term in each generalized estimating equation (GEE; see Methods) while 855 
correcting the multiple-hypothesis testing with the Benjamini–Hochberg method (FDR < 0.05). b, c 856 
Representative examples of the analyte–analyte pair significantly modified by the baseline MetBMI 857 
(b) or days in the program (c) in a. The solid line in each panel is the ordinary least squares (OLS) 858 
linear regression line with 95% confidence interval (CI). n = 530 (b, Intra-metabolomics (left)), 553 859 
(b, Intra-metabolomics (right)), 566 (b, Inter-omics) participants; n = 329 (c, Intra-metabolomics 860 
(left)), 344 (c, Intra-metabolomics (right)), 353 (c, Inter-omics) measurements from 184 metabolically 861 
obese participants. Of note, data points outside of plot range are trimmed in these presentations. 862 
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